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Fluorescent or luminescent probes that are sensitive
to the local environment within DNA duplexes rep-
resent important tools for DNA hybridisation[1] and
conformational changes caused by DNA±protein in-
teractions,[1] or for the detection of physiologically
important DNA base mismatches or lesions on DNA
chips or microarrays.[2] As a consequence, there is a
continuously increasing demand for new fluoro-
phores that have a clear and specific range of spec-
tral characteristics which are tunable to distinct exci-
tation or emission wavelengths. One suitable and
important way to create new emission properties is
to attach chromophores covalently to natural DNA
bases. Recently, we applied this modification strat-
egy to the preparation of photoexcitable charge
donors, which have been used for the investigation
of DNA-mediated electron transport.[3, 4]

Herein, we report the properties of DNA duplexes
bearing the 1-ethynylpyrene moiety (Py�C�C) cova-
lently attached to the bases dX=dA, dC, dG, or dU.
Three structural features of these Py�C�C�dX-modi-
fied DNA duplexes are important: i) a clear steric
separation of the pyrene moiety from the DNA base stack due
to the rigid ethynyl group, ii) a strong electronic coupling be-
tween the pyrene and the base moiety provided by the acety-
lene bridge and iii) a partial stacking of the base moiety as part
of the delocalised Py�C�C�dX chromophore. Moreover, the in-
corporation of the Py�C�C�dX moiety could influence only
the local conformation, but should not perturb the overall B-
DNA duplex conformation.

The Py�C�C�dX-modified oligonucleotides were synthesised
by a semiautomated synthetic strategy with solid-phase Sono-
gashira-type cross-coupling conditions (Scheme 1).[4, 5] It is im-
portant to note that a time-consuming synthesis of Py�C�C�
modified phosphoramidites[6] can be avoided because this
modification protocol is based on commercially available DNA
building blocks. First, the oligonucleotide was synthesised by
following standard protocols on a DNA synthesiser up to the
position of the Py�C�C�dX unit. At this position, either 8-

bromo-2’-deoxyadenosine, 2’-deoxy-5-iodocytidine, 8-bromo-
2’-deoxyguanosine, or 2’-deoxy-5-iodouridine was inserted au-
tomatically without the final deprotection of the terminal 5’-
OH group. Subsequently, the CPG vials were removed from the
synthesiser and a Sonogashira-coupling reagent mixture con-
taining Pd(PPh3)4 (60 mm), 1-ethynylpyrene (120 mm) and CuI
(60 mm) in DMF/Et3N (3.5:1.5) was added to the CPG vials
under dry conditions with syringes. After a coupling time of
3 h at room temperature, the CPGs were washed with different
solvents, dried and attached to the DNA synthesiser to finish
the synthesis automatically. Modification of the standard pro-
cedures for deprotection and cleavage of the oligonucleotides
from the solid phase, or during workup was not necessary. The
Py�C�C�dX-modified oligonucleotides were purified by semi-
preparative HPLC and identified by MALDI-TOF mass spectrom-
etry. HPLC analysis of the unpurified oligonucleotides showed
excellent coupling efficiencies of the Py�C�C�unit to the oli-
gonucleotides.

In the present work, a representative range of Py�C�C�dX-
modified duplexes 1±4 was prepared, that differ only by the
base dX to which the pyrene modification group has been at-
tached (Scheme 1). The base sequences of all duplexes 1±4 are
the same and are based on modified duplexes we have used
previously in electron-transport experiments.[3, 4,7] Due to this
experimental design, all observed spectroscopic differences be-
tween 1±4 can be attributed selectively to the different base
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Scheme 1. Schematic representation for the synthesis of the Py�C�C�dX-modified DNA du-
plexes 1±4. DMTO=dimethoxytrityl, B=DNA base, CPG=controlled pore glass, R=benzoyl
or isobutyroyl, I= inosine.
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pair dX±Y. In fact, the absorption properties of these Py�C�C�
dX-modified DNA duplexes depend remarkably on the at-
tached base dX (Figure 1). The absorption spectra of the DNA

duplexes 2 and 4 have their maxima at ~375 nm and ~400 nm.
In comparison, the absorption of the DNA duplexes 1 and 3 is
red-shifted significantly to ~390 nm and ~420 nm. Hence, the
absorption properties can be attributed to two structurally dif-
ferent groups of duplexes. DNA 1 and 3 have the Py�C�C�
unit attached to purines (dA or dG), and DNA 2 and 4 have
the Py�C�C�unit attached to pyrimidines (dC or dU). The ab-
sorption difference between these two groups of duplexes
could possibly be the result of different conformations of the
Py�C�C�dX-modified nucleosides (anti vs. syn).

The emission properties of the Py�C�C�dX-modified DNA
duplexes 1±4 vary significantly, too. However, in contrast to
the absorption properties, the emission behaviour cannot be
explained by simple structural features. In the Py�C�C�dX
group, the two chromophores are linked covalently by an acet-
ylene bridge that provides the structural basis for a strong
electronic coupling between them. A more careful look at the
fluorescence spectra reveals that the emissions of the DNA du-
plexes 2 (dX=dC) and 3 (dX=dG) are typical for a pyrene
structure with maxima at 408/430 nm or at 430/455 nm, re-
spectively. This observation indicates a rather weak electronic
coupling between the pyrene group and the heterocycles of
the DNA bases dC or dG, although attachment of the pyrene
group to the heterocycle of dG causes a significant red-shift of
~20 nm compared with dC. In contrast, the DNA duplexes 1
and 4 show broad and unstructured fluorescence bands with
maxima at 447 nm and 452 nm, respectively. These emissions,
which are different from that of pyrene, indicate that there is a
strong electronic interaction between the chromophores in
the Py�C�C�dX moiety and show that a partial charge transfer
takes place yielding intramolecular exciplexes containing both
excited state and charge-separated state character.[8]

Based on this knowledge about the spectroscopic properties
of DNAs 1±4, their potential as molecular beacons for DNA an-
alytics was elucidated in DNA hybridisation experiments. Ac-

cordingly, the UV/Vis absorption of the single-stranded (ss) Py�
C�C�dX-modified oligonucleotides 1(ss)±4(ss) has been com-
pared with the absorption of the corresponding DNA duplexes
1±4. For all duplexes, a strong new absorption band appears
at ~420 nm (1 and 3) or ~400 nm (2 and 4) as a result of the
DNA-duplex formation (Figure 2). Hence, this absorption band

can be attributed to the ground-state interaction of the Py�C�
C�dX group with the adjacent base pairs (dC±dG). In order to
rule out that such interactions also exist in the randomly
folded single-stranded oligonucleotides, the absorption of 1±4
was measured temperature-dependently. Accordingly, the
melting behaviour of the Py�C�C�dX-DNA duplexes was re-
corded at 421 nm (1 and 3) or 400 nm (2 and 4 ; Figure 3 and

Figure 1. Normalised absorption and steady-state fluorescence spectra of DNA
duplexes 1±4 in phosphate buffer (10 mm Na-Pi, pH 7.0), excitation at 385 nm
(1), 376 nm (2), 391 nm (3), or 378 nm (4).

Figure 2. UV/Vis spectra of the single-stranded oligonucleotides 1(ss)±4(ss) and
DNA duplexes 1±4 (1.25 mm) in phosphate buffer (10 mm Na-Pi, pH 7.0).

Figure 3. Melting temperatures (Tm) of the Py�C�C�dX-modified DNA duplexes
1±4 (1.25 mm) in phosphate buffer (10 mm Na-Pi, 150 mm NaCl, pH 7).
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Table 1). The corresponding melting temperatures at these
pyrene-specific wavelengths are ~10±15 8C lower than that of
the whole DNA duplexes, which were recorded at 260 nm. This

result shows that the local hybridisation at the Py�C�C�dX-
modification site breaks down at a lower temperature than the
whole DNA duplex; this indicates a local structural perturba-
tion. Possibly, such measurement of the local hybridisation in
DNA by UV/Vis spectroscopy could be applied to the investiga-
tion of DNA±protein interactions, for example, to monitor
base-flipping events of DNA damages in real-time.

The fluorescence properties of the Py�C�C�dX-modified
single-stranded oligonucleotides 1(ss)±4(ss) show a remarkable
difference from the spectra of the corresponding duplexes 1±4
(Figure 4). The fluorescence intensity increases by a factor up
to 40 (in the case of 3) if hybridisation with the complementa-
ry strand occurs. These fluorescence-intensity differences are
highest when the DNA duplexes are excited at the wavelength
of the ground-state interaction between the Py�C�C�dX-
group and the adjacent DNA bases, as described above (1 and
3 : ~420 nm, 2 and 4 : ~400 nm).

In conclusion, it has been shown that the Py�C�C� label
could be introduced into oligonucleotides by using a solid-
phase strategy based on commercially available phosphorami-
dites. The fluorescence and absorption properties of these Py�
C�C�dX-modified DNA duplexes can be tuned by variation of
the attached nucleobase dX. Interestingly, the absorption and
emission spectra of the Py�C�C�dX-modified DNA duplexes
overlay each other partially but not completely, which repre-
sents the prerequisite for FRET experiments. The DNA duplex
hybridisation can be observed by both fluorescence and ab-
sorption spectroscopy. Hence, the Py�C�C�dX group repre-
sents an important fluorescent label with different spectro-
scopic properties in single and double strands. Work is in prog-
ress to incorporate two different fluorescent probes by using
only a single postsynthetic Sonogashira-type labelling reaction.

Experimental Section

All experimental details about the preparation and spectroscopic
characterisation of the DNA duplexes 1±4 are described in the Sup-
porting Information; the results of MALDI-TOF-MS measurements
and CD spectroscopy are also provided there.
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